Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
Int Immunopharmacol ; 133: 112021, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38626549

RESUMEN

BACKGROUND: Diabetic retinopathy (DR) stands as a prevalent secondary complication of diabetes, notably Type 1 Diabetes Mellitus (T1D), characterized by immune system involvement potentially impacting the retinal immune response mediated by microglia. Early stages of DR witness blood-retinal barrier permeabilization, facilitating peripheral immune cell interaction with the retinal immune system. Kaempferol (Kae), known for its potent anti-inflammatory activity, presents a promising avenue in DR treatment by targeting the immune mechanisms underlying its onset and progression. Our investigation delves into the molecular intricacies of innate immune cell interaction during DR progression and the attenuation of inflammatory processes pivotal to its pathology. METHODS: Employing in vitro studies, we exposed HAPI microglial and J774.A1 macrophage cells to pro-inflammatory stimuli in the presence or absence of Kae. Ex vivo and in vivo experiments utilized BB rats, a T1D animal model. Retinal explants from BB rats were cultured with Kae, while intraperitoneal Kae injections were administered to BB rats for 15 days. Quantitative PCR, Western blotting, immunofluorescence, and Spectral Domain - Optical Coherence Tomography (SD-OCT) facilitated survival assessment, cellular signaling analysis, and inflammatory marker determination. RESULTS: Results demonstrate Kae significantly mitigates inflammatory processes across in vitro, ex vivo, and in vivo DR models, primarily targeting immune cell responses. Kae administration notably inhibits proinflammatory responses during DR progression while promoting an anti-inflammatory milieu, chiefly through microglia-mediated synthesis of Arginase-1 and Hemeoxygenase-1(HO-1). In vivo, Kae administration effectively preserves retinal integrity amid DR progression. CONCLUSIONS: Our findings elucidate the interplay between retinal and systemic immune cells in DR progression, underscoring a differential treatment response predominantly orchestrated by microglia's anti-inflammatory action. Kae treatment induces a phenotypic and functional shift in immune cells, delaying DR progression, thereby spotlighting microglial cells as a promising therapeutic target in DR management.


Asunto(s)
Retinopatía Diabética , Quempferoles , Macrófagos , Microglía , Animales , Retinopatía Diabética/tratamiento farmacológico , Retinopatía Diabética/inmunología , Retinopatía Diabética/patología , Microglía/efectos de los fármacos , Microglía/inmunología , Quempferoles/farmacología , Quempferoles/uso terapéutico , Ratas , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Ratones , Progresión de la Enfermedad , Diabetes Mellitus Tipo 1/tratamiento farmacológico , Diabetes Mellitus Tipo 1/inmunología , Retina/efectos de los fármacos , Retina/patología , Retina/inmunología , Línea Celular , Masculino , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Humanos , Agentes Inmunomoduladores/farmacología , Agentes Inmunomoduladores/uso terapéutico , Modelos Animales de Enfermedad
2.
J Biomol Struct Dyn ; : 1-18, 2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38407246

RESUMEN

One of the viral diseases that affect millions of people around the world, particularly in developing countries, is Japanese encephalitis (JE). In this study, the conserved protein of this virus, that is, non-structural protein 5 (NS5), was used as a target protein for this study, and a compound library of 749 antiviral molecules was screened against NS5. The current study employed machine learning-based virtual screening combined with molecular docking. Here, three hits (24360, 123519051 and 213039) had lower binding energies (< -8 kcal/mol) than the control, S-Adenosyl-L-homocysteine (SAH). All the compounds showed significant H-bond interactions with functional residues, which were also observed by the control. Molecular dynamics simulation, MM/GBSA for binding free energy analysis, principal component analysis and free energy landscape were also performed to study the stability of the complex formation. All three compounds had similar root mean square deviation trends, which were comparable to the control, SAH. Post-MD, the 123519051-receptor complex had the highest number of H-bonds (4 to 5) after the control, out of which three exhibited the highest percentage occupancy (50%, 24% and 79%). Both docking and MD, 123519051 showed an H-bond with the residue Gly111, which was also found for the control-protein complex. 123519051 showed the lowest binding free energy with ΔGbind of -89 kJ/mol. Steered molecular dynamics depicted that 123519051 had the maximum magnitude of dissociation (1436.43 kJ/mol/nm), which was more than the control, validating its stable complex formation. This study concluded that 123519051 is a binder and could inhibit the protein NS5 of JE.Communicated by Ramaswamy H. Sarma.

3.
Saudi Pharm J ; 31(9): 101732, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37638220

RESUMEN

Epilepsy is a chronic neurological disorder marked by recurrent seizures, significantly affecting the population in Saudi Arabia across all age demographics. The global prevalence of active epilepsy is around 6.38/1,000 persons and in the Arabian region, the median prevalence of active epilepsy is 4.4/1,000 persons. However, over 75% of individuals are untreated. Consequently, the development of therapeutic strategies with increased efficacy and safety profiles is essential to improve the survival rate among epilepsy patients. The current study integrates network pharmacology along with Bioinformatics approaches to explore the potential molecular mechanisms of local flora of Saudi Arabia including Solanum incanum, Abrus precatorius, Withania somnifera, and Azadirachta indica in epilepsy treatment. In the preliminary phase, data related to the bioactive components of the local plants and the associated target genes of both these plants and epilepsy were gathered from scientific literature and open-source databases. This data was then analyzed to identify common targets between the plants and ovarian cancer. Based on these common targets, a protein-protein interaction (PPI) network was constructed utilizing the STRING database, which was subsequently incorporated into the Cytoscape software for identification of hub genes based on their degree of connectivity. Lastly, an interplay network depicting the associations between the compounds and the overlapping genes was formulated via Cytoscape, to study the potential network pharmacology implications of these active compounds in relation to ovarian cancer. Following that, a compound-target protein-pathway network was constructed which uncovered that namely abrectorin, genistin, (+)-catechin, precatorine, (+)-ascorbic acid, licoflavanone, skrofulein, stigmasterone, 5,7-Dihydroxy-4'-methoxy-8,3'-di-C-prenylflavanone could potentially be used as antagonists for the therapeutic management of epilepsy by targeting TNF and TP53 proteins. Furthermore, the implementation of molecular docking reinforces the binding affinity of the compound, indicating a robust stability of the forecasted compounds at the docked site. This research lays both a theoretical and experimental groundwork for more profound investigations and establishes a practical method for the strategic employment of active compounds in the development of anti-epileptic therapeutics.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...